224 research outputs found

    Use of Nuclear Magnetic Resonance Imaging Angiography to Follow-Up Arterial Remodeling in an Animal Model

    Get PDF
    Appropriately sized arteries in small animals may be possible models for studying the remodeling process as occurs after arterial balloon injury in humans. Magnetic resonance imaging (MRI) is able to noninvasively image tissue in vivo. To date, small animal angiog raphy models have mostly used research-dedicated instruments and resolution, which are not universally available.Experiments were carried out on a rat aorta model of remodeling in vivo (n=40). Arteries were injured by oversized balloon dilation; control arteries were uninjured. Angiography imaging was performed immediately before sacrifice with an unmodified clinical MRI unit, a 1.5 Tesla MR tomograph with a 20-cm-diameter coil. Longitudinal MRI pictures of the aorta and morphometry of tissue sections to measure luminal and arterial wall areas were analyzed with use of computer-assisted techniques.Comparison of dimensions demonstrated correlation between MRI and histology measurements of the lumen. MRI and morphometry showed a gradual increase in mean luminal area over 6 weeks following injury. The lumen increase correlated with total arterial area and thickness.In this rat aorta model, remodeling documented at histology was followed-up in vivo. The use of such clinical MRI scanners has potential to reduce animal numbers needed to follow-up the remodeling process after therapeutic intervention

    Inflation and dark matter in two Higgs doublet models

    Get PDF
    We consider the Higgs inflation in the extension of the Standard Model with two Higgs doublets coupled to gravity non-minimally. In the presence of an approximate global U(1) symmetry in the Higgs sector, both radial and angular modes of neutral Higgs bosons drive inflation where large non-Gaussianity is possible from appropriate initial conditions on the angular mode. We also discuss the case with single-field inflation for which the U(1) symmetry is broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity and stability conditions restrict the parameter space of the Higgs quartic couplings at low energy in both multi- and single-field cases. Focusing on the inert doublet models where Z_2 symmetry remains unbroken at low energy, we show that the extra neutral Higgs boson can be a dark matter candidate consistent with the inflationary constraints. The doublet dark matter is always heavy in multi-field inflation while it can be light due to the suppression of the co-annihilation in single-field inflation. The implication of the extra quartic couplings on the vacuum stability bound is also discussed in the light of the recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added, references added and typos corrected, to appear in Journal of High Energy Physic

    WIMP-nucleus scattering in chiral effective theory

    Full text link
    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.Comment: 23 pages, 6 figures, 1 tabl

    Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson

    Full text link
    We explore the implications of a 126 GeV Higgs boson indicated by the recent LHC results for two-Higgs doublet model (2HDM). Identifying the 126 GeV Higgs boson as either the lighter or heavier of CP even neutral Higgs bosons in 2HDM, we examine how the masses of Higgs fields and mixing parameters can be constrained by the theoretical conditions and experimental constraints. The theoretical conditions taken into account are the vacuum stability, perturbativity and unitarity required to be satisfied up to a cut-off scale. We also show how bounds on the masses of Higgs bosons and mixing parameters depend on the cut-off scale. In addition, we investigate whether the allowed regions of parameter space can accommodate particularly the enhanced di-photon signals, ZZ* and WW* decay modes of the Higgs boson, and examine the prediction of the signal strength of Z{\gamma} decay mode for the allowed regions of the parameter space.Comment: To be published in JHEP, 20 pages, 11 figures, Figures and results are updated for the recent LHC result

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    High-resolution intravascular magnetic resonance quantification of atherosclerotic plaque at 3T

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thickness of fibrous caps (FCT) of atherosclerotic lesions is a critical factor affecting plaque vulnerability to rupture. This study tests whether 3 Tesla high-resolution intravascular cardiovascular magnetic resonance (CMR) employing tiny loopless detectors can identify lesions and accurately measure FCT in human arterial specimens, and whether such an approach is feasible <it>in vivo </it>using animal models.</p> <p>Methods</p> <p>Receive-only 2.2 mm and 0.8 mm diameter intravascular loopless CMR detectors were fabricated for a clinical 3 Tesla MR scanner, and the absolute signal-to-noise ratio determined. The detectors were applied in a two-step protocol comprised of CMR angiography to identify atherosclerotic lesions, followed by high-resolution CMR to characterize FCT, lesion size, and/or vessel wall thickness. The protocol was applied in fresh human iliac and carotid artery specimens in a human-equivalent saline bath. Mean FCT measured by 80 μm intravascular CMR was compared with histology of the same sections. <it>In vivo </it>studies compared aortic wall thickness and plaque size in healthy and hyperlipidemic rabbit models, with post-mortem histology.</p> <p>Results</p> <p>Histology confirmed plaques in human specimens, with calcifications appearing as signal voids. Mean FCT agreed with histological measurements within 13% on average (correlation coefficient, <it>R </it>= 0.98; Bland-Altman analysis, -1.3 ± 68.9 μm). <it>In vivo </it>aortic wall and plaque size measured by 80 μm intravascular CMR agreed with histology.</p> <p>Conclusion</p> <p>Intravascular 3T CMR with loopless detectors can both locate atherosclerotic lesions, and accurately measure FCT at high-resolution in a strategy that appears feasible <it>in vivo</it>. The approach shows promise for quantifying vulnerable plaque for evaluating experimental therapies.</p

    Establishment of a Bluetongue Virus Infection Model in Mice that Are Deficient in the Alpha/Beta Interferon Receptor

    Get PDF
    Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV
    corecore